Equivariant collapses and the homotopy type of iterated clique graphs
نویسندگان
چکیده
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K(G) = G, K(G) = K(K(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper we show two infinite classes of clique-divergent graphs that satisfy G ≃ Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.
منابع مشابه
Discrete Morse Theory and the Homotopy Type of Clique Graphs
We attach topological concepts to a simple graph by means of the simplicial complex of its complete subgraphs. Using Forman’s discrete Morse theory we show that the strong product of two graphs is homotopic to the topological product of the spaces of their complexes. As a consequence, we enlarge the class of clique divergent graphs known to be homotopy equivalent to all its iterated clique graphs.
متن کاملOn second iterated clique graphs that are also third iterated clique graphs
Iterated clique graphs arise when the clique operator is applied to a graph more than once. Determining whether a graph is a clique graph or an iterated clique graph is usually a difficult task. The fact that being a clique graph and being an iterated clique graph are not equivalent things has been proved recently. However, it is still unknown whether the classes of second iterated clique graph...
متن کاملOn the Topology of Weakly and Strongly Separated Set Complexes
We examine the topology of the clique complexes of the graphs of weakly and strongly separated subsets of the set [n] = {1, 2, . . . , n}, which, after deleting all cone points, we denote by ∆̂ws(n) and ∆̂ss(n), respectively. In particular, we find that ∆̂ws(n) is contractible for n ≥ 4, while ∆̂ss(n) is homotopy equivalent to a sphere of dimension n− 3. We also show that our homotopy equivalences ...
متن کاملPosets, clique graphs and their homotopy type
To any finite poset P we associate two graphs which we denote by Ω(P ) and 0(P ). Several standard constructions can be seen as Ω(P ) or 0(P ) for suitable posets P , including the comparability graph of a poset, the clique graph of a graph and the 1–skeleton of a simplicial complex. We interpret graphs and posets as simplicial complexes using complete subgraphs and chains as simplices. Then we...
متن کاملD-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 308 شماره
صفحات -
تاریخ انتشار 2008